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Abstract

Many video action recognition models rely on back-
ground information or context clues; these models are nat-
ural extensions of image processing, where only spatial in-
formation is needed. Our project focuses on classification
of dance styles from video, a domain that requires repre-
sentation of motion because contextual information such as
scenery or props is often sparse. We use Castro et al.’s Let’s
Dance dataset, designed specifically for this purpose. Our
contribution is the application of sequential models to this
dataset. We show that, while sequential models out-perform
purely spatial models by roughly 10% accuracy, they are not
as successful in dance style recognition as Castro’s models
that use optical flow to explicitly encode motion.

1. Introduction

Identifying highly dynamic, temporal actions from video
is a complicated task in visual recognition. Of particular
interest is identifying human motion and activity, with ap-
plications ranging from security, automatic video tagging,
and collision avoidance systems. Humans display almost
full range of motion through dance, and accurately iden-
tifying dance styles requires numerous samples over time.
Thus, accurately identifying dance styles is an excellent
case study for validating human motion identification meth-
ods.

Our project is an action recognition task which seeks to
classify video clips as one of ten types (classes) of dance:
ballet, break dancing, flamenco, foxtrot, latin, quickstep,
square, swing, tango, or waltz. Some of these dances oc-
cur in very similar settings (e.g. the ballroom dances shown
in Figure 1), which makes them challenging to differentiate
based on background imagery alone. As a result, a success-
ful model will need to encode movement or pose informa-
tion.

For this task, we use the Let’s Dance dataset presented

by Castro et al. [4], which is comprised of 10-second video
clips from the ten dance styles listed above. The input to
our model is a sequence of RGB frames from a single video
clip and the pose data extracted from those frames. The
output of our model is a prediction of the type of dance in
the video.

There are three broad classes of models used for action
recognition in video: spatial, temporal, and sequential. A
spatial model is a frame-by-frame model that only consid-
ers two-dimensional information. Spatial models are often
used as the baseline methods. Temporal models incorpo-
rate a time dimension, for example by processing chunks of
many frames rather than single frames, or by using 3D con-
volution. Sequential models, such as RNNs, are a subset
of temporal models; they include a time dimension, but add
the constraint that there is no leakage of information from
the future to the past.

Castro et al. [4] present both spatial models and temporal
models, but no sequential models. In this paper, we assess
the effectiveness of several sequential models, including a
traditional LSTM, in modeling dynamic movement. The
most common challenge with recurrent models is the van-
ishing gradient problem. To address this problem, we also
present an LSTM model with self-attention, and the more
recent temporal convolutional network from Bai et al. [2],
which does not suffer from the usual maladies of recursive
networks. We find that, although these sequential models
achieve significantly better performance than the baseline
frame-by-frame approach, they don’t achieve the accuracy
of Castro’s temporal models.

2. Related Work

Image recognition with convolutional neural networks
has had great success in recent years, with state-of-the-art
object detectors outperforming humans on the ILSVCR im-
age recognition task [9]. However, action identification on
videos has not reached the same level of technical maturity.
Two major problems exist: first, videos are larger than im-
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Figure 1: Example frames from the RGB dataset [4].
Class types from top left to bottom right: waltz, quick-
step, foxtrot, tango.

ages, so training is much more computationally expensive.
Second, to perform well, video classifiers must reason about
the relationships between features over space and time. This
is harder than the image classification task, which only has
to learn spatial relationships. A large body of prior work
exists to address these issues.

Early video classification methods use hand-crafted fea-
tures and non-neural network models to classify videos.
Custom features include ‘Histogram of Gradient’ and ‘His-
togram of Optical Flow’ [14], as well as the popular ‘dense
trajectory’ features from Wang and Schmid (2012) [28].
These handcrafted features are not generalizable, and can-
not be used on a wide variety of videos. Early models in-
clude bag of words [19] or Fisher vectors [22]. These mod-
els are typically less costly to train and evaluate, but lack the
expressivity and capacity of neural network models. While
these approaches mostly been supplanted by deep learning
methods, some handcrafted features, notably optical flow,
are still used as pre-extracted features in neural network
models.

When convolutional neural networks started gaining
popularity, video classification also shifted to deep learn-
ing methods. Early works treat spatial and temporal do-
mains of an image equally, performing 3D convolution on
stacks of image frames. Ji et al. [10] perform 3D con-
volutions on inputs consisting of multiple stacked contin-
uous frames. In order to capture longer term dependen-
cies, they hand-craft auxiliary long-term features. Further
work by Karpathy et al. [11] builds on 3D convolution by
introducing different ways to fuse the information from a
stack of frames. They treat each video as a bag of short
clips. Each clip is passed through a CNN, and the results
are combined with early, late, or slow fusion in an attempt
to capture temporal features across the clip. In early fusion,
the first layer of the network performs a 3D convolution on
multiple input frames. In late fusion, temporally distant
frames are passed to separate convolutional stacks, which
are trained in parallel, and the results are fused in a final lin-
ear layer. Slow fusion is a mixture of these two approaches,

and works marginally better than either. Despite these tech-
niques, Karpathy et al. [11] only achieve marginally better
performance than single frame models, which don’t attempt
to learn any temporal relationship between images.

This failure to learn good temporal features was ad-
dressed by Ng et al. [30], who applied temporal pooling
[29] to convolutional neural networks. Temporal pooling
computes features for every frame, then pools them across
frames. The pooled result is used to classify the video. Ng
et al. [30] find that max pooling over the outputs of the last
convolutional layer in a network yields better results than
early, late, or slow fusion.

Another key development in capturing temporal video
features is the use of optical flow data. Optical flow data
captures the motion of each pixel between the current frame
and subsequent frames. Typically, Farneback’s methodol-
ogy [7] is used to calculate the pixel displacement. An
immensely influential paper, [23], finds that optical flow
data is critical to making accurate video classifiers, and is
able to achieve 81.2% classification accuracy on UCF-101
using both RGB and optical flow information, the best at
the time. This need for optical flow data is echoed in most
later works, including [8] and [15]. Two-stream CNNs us-
ing RGB and optical flow remain one of the most popular
and effective approaches for action recognition.

All of the techniques mentioned thus far make use of
convolutional neural networks with a final linear layer. The
major drawback of this technique is that long term de-
pendencies cannot be captured. Other works seek redress
with the use of alternative architectures, including Recur-
rent Neural Networks. [30] was one of the first to investi-
gate the use of an LSTM-RNN, but they find that it under-
performs temporal pooling of convolutional features. Ma
et al. (2017) [15] develop a Temporal Segment LSTM; in a
TS-LSTM, the sampled video frames are divided into seg-
ments, and a temporal pooling layer is applied to extract the
best features from each segment. Those extracted features
are then fed into a single layer LSTM. They find that the
temporal segmentation of the videos is critical, as is the use
of a single LSTM layer to avoid over-fitting. Using these
methods, they are able to achieve 94.1% accuracy on the
UCF-101 dataset. To our knowledge, this is the best per-
forming RNN architecture on the UCF-101 classification
task.

To compare the performance of these various algorithms
on action classification tasks, a summary of their perfor-
mance on the UCF-101 dataset [24] is included in Table 1.
[1].

There is limited available research on identifying dance
styles from video. The research that does exist centers
around cultural folk dances, and focuses on methods for
pose estimation. Protopapadakis et al. [20] focus on us-
ing pose information extracted from sensors to identify six
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Methods UCF-101
UCF-101 Baseline [24] 43.9%
3D CNN with Slow Fusion [11] 63.3%
Two-Stream [23] 88.0%
Convolutional Two-Stream [8] 92.5%
TS-LSTM [15] 94.1%

Table 1: Summary of video classification model accuracy on UCF-101 Dataset.

types of Greek folk dance. The authors also encode tempo-
ral information by subtracting the pose information in con-
secutive frames. Similarly, Kishore et al. [13] focus on clas-
sifying Indian classical dance (ICD) actions using CNNs,
but the focus is on identifying dance forms through dance
poses as opposed to distinctive movements. For exam-
ple, one way that the authors generate their training data is
recording different subjects performing 200 familiar dance
poses from various ICD forms, making sure to capture each
pose for at least 60 frames. Dewan et al. [6] use pose es-
timation to extract RGB and optical flow data for regions
of “important motion” in Indian classical dance. They use
a CNN to extract features from each region, and combine
the features for each frame. Finally, they use an RNN to
model a sequence of frames, achieving 93.6% classification
accuracy on the ICD dataset.

Our work focuses on the use of RNN architectures, as
they are much more capable than 3D convolutions at cap-
turing long term time dependencies. We make use of a
late fusion, two-stream architecture, as this approach has
been shown to yield excellent, computationally tractable re-
sults. Finally, we erroneously excluded optical flow from
our work, as we did not realize at the outset how impor-
tant that additional temporal encoding was to classification
accuracy.

3. Methods
3.1. Baseline Methods

The traditional baseline method for action classification
from video is a spatial model—that is, a frame-by-frame
model with no temporal component. A CNN is trained on
individual frames of a video. At test time, all frames of a
video are individually classified, and the video’s final clas-
sification is the majority class of its frames. We compare
our results to the frame by frame model introduced by Cas-
tro et al., which uses a pre-trained variant of CaffeNet that
has been finetuned on the Let’s Dance dataset. This model
achieves test accuracy of 56.4% [4].

Additionally, we compare our model to the five tempo-
ral models presented by Castro et al., summarized in Table
2. These models incorporate the time dimension in one of
three ways: optical flow data, 3D convolution, or stacked

convolution. The optical flow data is computed from frame
n and frame n− k, using Farneback’s methodology [7]. 3D
convolution uses a receptive field that spans both space and
time dimensions. Stacked convolution uses 16 frames are
stacked together to form an input; this is to capture tempo-
ral dependencies between the frames.

The most successful of Castro et al.’s models are the
temporal 3D CNN using RGB data only and the tempo-
ral three-stream CNN. The drawback of the 3D convolu-
tion is that it is computationally intensive to the extent that
it was not possible to train a three-stream model with 3D
convolution. The temporal three-stream CNN has similar
performance (70.11% vs 71.6% for the 3D convolution),
but is less computationally intensive. However, Castro et
al. note that the single-frame two-stream and three-stream
CNNs achieve almost the same accuracy as the temporal
three-stream CNN without stacked convolution. What these
three models have in common is the use of optical flow data;
which raises the question of whether optical flow is the key
reason these multi-stream models were successful.

3.2. Proposed Approach

To answer this question, we propose three models that do
not use optical flow data to capture the temporal dimension.
Instead, we rely only on spatial data from each frame, and
use sequential models to capture motion over time.

Like Castro et al., our method utilizes a two-stream late
fusion model, shown in Figure 2. The two streams of data
are RGB images and PoseNet skeleton data. Features are
extracted from each RGB frame using Pytorch’s [18] pre-
trained ResNet-18 model with the final layer converted to
an identity layer, resulting in 512-dimensional features.

Features are extracted from the PoseNet data using a
shallow CNN with small filters adapted from Khalid and
Yu [12]. Specifically, the model has two 2D convolutions
with three channels and kernel size three, a ReLU activa-
tion, and a fully connected layer with input size 102 and
output size ten (the number of classes). The model weights
are initialized using Xavier initialization, and the model is
trained with an Nestorov accelerated gradient descent (mo-
mentum 0.9), batch size 100, and learning rate 0.01. Note
that while Castro et al. train their model on the “visualized”
pose data — RGB images of the extracted pose skeleton
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Method Data Streams # Frames Convolution Testing Accuracy
Frame-by-Frame CNN RGB 1 2D 56.4%
Two-Stream CNN RGB; Optical Flow 1 2D 68.89%
Three-Stream CNN RGB; Optical Flow; Pose 1 2D 69.20%
Temporal 3D CNN RGB RGB 16 3D 70.11%
Temporal 3D CNN Skeletal Pose 16 3D 57.14%
Temporal Three-Stream CNN RGB; Optical Flow; Pose 16 2D 71.6%

Table 2: Summary of models presented by Castro et al. [4]. The frame-by-frame CNN is a spatial model, while the re-
maining five models are temporal, incorporating the time dimension using optical flow data, 3D convolution, and/or stacked
convolution using 16-frame chunks.

— we choose to train our model on the raw feature maps.
These features are much richer; they exactly capture posi-
tions of joints and limbs. Training a CNN on the visualized
skeletons reintroduces a layer of abstraction.

Note that both feature extractors are trained on individual
frames so no temporal aspects are considered at the feature
extraction level.

After extracting the features from both datasets, we con-
catenate the 512-dimensional RGB image features and the
102-dimensional pose features to create 614-dimensional
representations of each image. To create sequences from
these features, we subsample the original 30fps video clips,
with the subsampling rate determined through hyperparam-
eter tuning. This creates a sequence of length anywhere be-
tween 2 and 300 for each 10-second clip. This sequence of
combined data is then input to one of three sequential mod-
els: an LSTM, an LSTM with self-attention, and a temporal
convolutional neural network (TCN).

Figure 2: Our Two-Stream Late Fusion Architecture using
raw input frames and PosetNet coordinates. The sequential
model is either a vanilla LSTM, LSTM with self-attention,
or temporal convolutional neural network (TCN).

3.2.1 LSTM

This network consists of a dropout layer, a LSTM with
hidden dimension 100, and a fully-connected layer to pro-
duce scores for the ten classes. The hyper-parameters tuned
are the learning rate, dimension of the hidden layer, batch
size, dropout rate, weight decay (equivalent to L2 regular-
ization), frame sampling frequency, and optimizer (Adam
or SGD). Our final model is trained with learning rate

0.0167, hidden dimension 128, batch size 64, dropout rate
of 0.7, weight decay 0.0284, frame sub-sampling of every
60 frames, and Nestorov accelerated gradient descent (mo-
mentum 0.9).

3.2.2 LSTM with Self-Attention

In our LSTM, the addition of self-attention allows the model
to determine which frames in a sequence should receive the
most weight in the output. The attention mechanism used
is scaled dot product self-attention, adapted from Vaswani
et al. [27]. Vaswani et al. advocate for using self-attention
as opposed to the recurrent and convolutional layers com-
monly used for attention because it is computationally less
complex and faster to compute. Self-attention also yields
more interpretable models.

In self-attention, the weights are determined by comput-
ing the dot product of the final cell state, cT , and the outputs
from each step in the sequence, y = [y1, y2, . . . , yT ]. These
weights are then divided by the dimension of the outputs
and constrained with a softmax. The result α is used to
compute a linear combination of the outputs yi as seen in
the equation below:

a =

[
cTT y1√
dy
,
cTT y2√
dy
, . . . ,

cTT yT√
dy

]
, α = σ(a)

Figure 3 visualizes the computations necessary for a
LSTM with scaled dot-product self-attention.

For the self-attention model, we tuned the same hyper-
parameters as for the plain LSTM model. The result-
ing model is trained with learning rate 0.0591, hidden di-
mension 32, batch size 16, dropout rate of 0.05, weight
decay 1e-05, frame sub-sampling frequency of every 30
frames, and Nestorov accelerated gradient descent (momen-
tum 0.9).
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Figure 3: LSTM layer with self-attention.

3.2.3 Temporal Convolutional Network

We use a temporal convolutional network (TCN) introduced
by Bai et al. (2018) [2, 5]. The authors describe a TCN as a
network that (1) is causal, meaning that the receptive field
of each convolution only includes previous elements in the
sequence, and (2) can process a sequence of any length. A
TCN is similar to a RNN in that it processes inputs sequen-
tially, and it can process a sequence of any length. However,
it does not suffer from the vanishing gradient problem on
long sequences. This is because the direction of backprop-
agation is not through previous elements of the sequence,
but through the previous convolutional layers. This feature
makes the TCN a compelling alternative to our LSTM ar-
chitectures.

Each layer of the TCN architecture contains causal con-
volutions with increasing dilation. A causal convolution is
a convolution that, at time t, only sees elements of the pre-
vious layer at time t or an earlier time [2]. A convolution
with dilation is one with gaps between rows and columns
of the filter. In the one-dimensional case, a causal dilated
convolution F with kernel size k can be computed on input
x at time t as:

F (t) =

k∑
i=1

f(i) · xt−d·i

where d is the dilation factor. Dilation is used to create a
receptive field that grows exponentially in each subsequent
layer. The effective history of each layer in a TCN is (k −
1) · d.

Figure 4 shows a three-layer TCN with kernel size 3 and
exponential dilation. The sequences are padded to ensure
that each hidden layer has the same sequence length. The
output layer in this diagram has effective history of (3 −
1)4 = 8. The receptive field is even larger; if the elements

of the nth layer have effective history (k − 1)2(n−1), then
the receptive field of the nth layer is

n∑
i=1

(k − 1)2(n−1)

The TCN used in this study also has kernel size 3 and
exponential dilation, but it has six layers. The dilation factor
in the sixth layer is 25, so the effective history is 64 and the
receptive field is 126.

The hyperparameters tuned were the batch size, number
of layers, number of convolution channels, dropout prob-
ability, learning rate, and optimizer. The final model was
trained with batch size 64, 6 layers, 128 channels per con-
volution, dropout rate of 0.02, learning rate 0.0022, and the
same SGD optimizer used for the LSTM models. The con-
volutional filters for each layer were randomly initialized
using a N (0, 0.01) distribution. The frame sub-sampling is
every five frames.

4. Data

We use the publicly available Let’s Dance video dataset
[3] created by Castro et al. [4], which contains roughly
1,000 videos spanning 10 dynamic and visually overlap-
ping dance types. There are approximately 100 videos per
dance style, extracted from YouTube in 10-second clips at
30 frames per second. Each video is available in its original
RGB format and as extracted pose coordinates.

The data was randomized at the video level into 80%
training, 10% validation, and 10% test data. The same splits
were used for the RGB data and the pose data.

4.1. RGB Data

Each frame in the RGB dataset is stored as a JPG file
(see Figure 1 for examples). We process the frames using
a series of Pytorch image transformations. First, the im-
ages are resized to (3x256x256), then they are normalized
using the mean and standard deviation from ImageNet as
recommended by PyTorch’s documentation for pre-trained
models [21].

4.2. Pose Data

Each frame’s pose data is a set of (x, y) coordinates for
17 different body labels for each person in the frame. Body
labels include nose, left eye, and right hip. The number of
dancers per frame varies between zero and 20. An empty
pose file typically indicates that the feature extractor was
unable to identify any bodies, while a pose file with 20
entries indicates a group performance. Although our data
source states that the pose data was extracted using Face-
book’s DensePose, the data does not match the DensePose
schema. Based on the 17 body labels in the pose data,
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Figure 4: Architecture of a TCN. The left-hand side shows a three-layer TCN with kernel size 3 and exponential dilation
in each layer. The right-hand side shows the detail of each layer, including two dilated causal convolutions and a residual
connection. Based on Figure 1 from [5]

it seems that the poses were created using TensorFlow’s
PoseNet model [26].

To transform the pose data into a usable format for our
models, we created a one time pre-processing pipeline. We
zero-pad frames with fewer than 20 skeletons and generate
missing pose files for 28 missing frames. Next, we center
and normalize the “keypoints” of each skeleton to achieve a
standardized dancer. This is necessary for several reasons:
there are varying frame sizes in the dataset, dancers appear
in different parts of the image, and dancer scale varies based
on camera proximity. To center and normalize all the key-
points, we use a similar approach as Neverova et al. [16]-
we construct a bounding box around each skeleton and use
that box to normalize the keypoints. This results in keypoint
values between -1 and 1.

5. Results

Our quantitative results, relative to the frame-by-frame
baseline from Castro et al., are shown in Table 3. Although
the frame-by-frame model is the most relevant, it is not a
perfect comparison. Castro’s frame-by-frame model makes
predictions for every frame in a given video clip, and then
uses plurality voting to classify the video as a whole. In
contrast, our sequential models use frame sub-sampling to
reduce the length of the input sequence, so less information
is used for training. Furthermore, all of our models utilize
the extracted pose information, which Castro’s frame-by-
frame baseline does not.

We want to note that the differences in testing accuracy
presented in Table 3 may stem from more than just varia-
tions in modeling technique. On the Let’s Dance project

site [3], where we obtained our dataset, Castro et al. [4]
note that some of the videos used in their model had been
removed from the dataset since they had been deleted from
Youtube. Furthermore, since publishing their paper, Castro
et al. [4] have changed the way they generate pose data from
the raw video frames.

5.1. Feature Encoding

In order to assess what information the pre-trained
ResNet-18 encoded from the RGB images, we created
saliency maps to visualize the 512 features in the output
layer. In particular, we visualized the gradients of the fea-
tures with respect to the input images using the “guided
backpropagation” method introduced by Springenberg et
al. [25]. We created saliency maps for a sample of video
frames, and for each frame visualized the average saliency
map across 512 features, as shown. This average was com-
puted by summing the 512 saliency maps and dividing the
result by 512. Figure 5 shows samples from three dance
styles. The saliency maps demonstrate that the features ex-
tracted from the RGB images are generally focused on pose
information rather than the scenery. We observed that the
features consistently picked up on the people’s bodies (par-
ticularly their heads), as well as light fixtures and prominent
edges in the background. We also noticed that the ResNet
was confused by fabric, and failed to pick up people wear-
ing long dresses or skirts, as in Figure 5a.

5.2. LSTM

The LSTM model achieves testing accuracy of 65.9%,
ten percentage points higher than the baseline frame-by-
frame model. However, the accuracy is still several per-
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(a) Ballet

(b) Swing

(c) Break Dance

Figure 5: Saliency maps of RGB images computed using
guided backpropagation through the pretrained ResNet-18
architecture.

centage points behind Castro’s multi-stream CNNs that in-
corporate optical flow.

The dropout rate used to train this model is 0.70; because
the data set is so small (less than 1,000 video clips in total),
even a small model can be expressive enough to over-fit the
training data. Therefore, aggressive dropout is needed to
ensure that the model generalizes to the test data.

Surprisingly, the hyperparameter tuning chose sub-
sampling of every 60 frames, meaning that each 10-second
video clip was reduced to a sequence of 5 frames, one ev-
ery two seconds. This level of sub-sampling is surprising
because it can’t encode dance movements faster than two
seconds. On the other hand, it’s likely that processing very
short sequences greatly reduced or eliminated the vanishing
gradient problem.

Figure 6a shows the confusion matrix for the LSTM
model. The dance styles predicted with the greatest accu-
racy are ballet, break dancing, and square dancing. Two
videos of Latin dance were classified as ballet, and one
video of break dancing was classified as swing. Ballet and
break dancing, unlike the other dance forms, are not partner
dances, so they are visually distinctive. Although square
dancing is a partner dance, large portions of the dance are
performed in groups, for example by joining hands in a cir-
cle. This may explain why square dancing is always cor-
rectly identified, and is never confused with other dance
forms. The highlighted area in the bottom right corner of
the confusion matrix indicates that tango and waltz are of-
ten confused; of the ten tango videos, half were mistakenly
classified as waltz. Quickstep is the most frequently mis-
classified; only two of the ten videos are correctly identi-
fied as quickstep, while the remainder are marked as foxtrot,
swing, tango, and waltz.

5.3. LSTM with Self-Attention

We expected self-attention to enhance the performance
of the LSTM by directing weight to the most important
frames. However, the LSTM with attention achieves ac-
curacy of 63.7%, slightly lower than the standard LSTM.
Given that our test data set only consists of 91 video clips
(10% of the original 1000 videos), this performance is com-
parable. The confusion matrix in Figure 6b is similar to the
confusion matrix for the LSTM. The LSTM with attention
correctly classifies all 11 ballet videos, 10 break dancing
videos, and 9 square dance videos, but does not classify any
foxtrot videos correctly. Relative to the plain LSTM, it is
more successful at differentiating tango and waltz; perhaps
the attention mechanism was useful in differentiating visu-
ally similar ballroom dances. There were no dance types
where the TCN outperformed both LSTM models in identi-
fying the right videos.

Even though classification accuracy was comparable be-
tween the LSTM model and the LSTM with attention
model, hyperparameter tuning yielded pretty different pa-
rameters. While hyperparameter tuning chose a very ag-
gressive dropout rate for the LSTM, it selected a dropout
rate of 0.05 for the self-attention model. Also, it preferred
a smaller frame subsampling rate of every 30 frames for
the self-attention model, meaning that each 10-second video
clip was reduced to a sequence of 10 frames (one per sec-
ond). This yields a sequence with double the number of
frames as compared to the LSTM. Perhaps a smaller sam-
pling rate was preferred because the attention model is able
to handle longer sequences of frames since it can upweight
more important frames and downweigh less important ones.
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Method Testing Accuracy
Frame-by-Frame CNN [4] 56.4%
Two-Stream LSTM 65.9%
Two-Stream Attention LSTM 63.7%
Two-Stream TCN 58.2%

Table 3: Comparison of testing accuracy against Castro et
al. [4] frame-by-frame CNN.

5.4. Temporal Convolutional Network (TCN)

The TCN model achieves accuracy of 58.2% on the test
data, only marginally better than the frame-by-frame model.
Although the TCN performed well on the validation set,
achieving 75% accuracy, it did not generalize well to the
test data. The confusion matrix shows that, like the LSTM
models, the TCN performs well on ballet, break dancing,
and square dancing, likely due to the distinctive features of
those dances. However, it struggled more than the LSTM
models in identifying the tango videos, instead mislabelling
most of them as waltz.

One hypothesis for the TCN’s subpar performance is that
it is not expressive enough to capture differences in move-
ment between the dances; the LSTM models involve far
more parameters per layer than the TCN. Perhaps if we had
increased the complexity of the TCN by adding hidden lay-
ers, reducing the regularization, etc. its performance would
have improved.

6. Conclusion and Future Work
Surprisingly, the plain LSTM model out-performed both

the LSTM with attention and the TCN model. We had
expected that attention would help direct the focus to key
frames, and that the TCN would alleviate potential prob-
lems with vanishing gradients. However, given that the
LSTM performed best with only 5 frames from a 10-second
video clip, vanishing gradients were not problematic.

Future work should expand hyperparameter tuning; we
were able to tests hundreds of hyperparameter combina-
tions, but Castro et al., for example, used 10,000 iterations
to fine-tune their frame-by-frame baseline. Given the low
accuracy of the TCN, we would like to explore deeper mod-
els, larger kernel sizes for the causal convolution, and differ-
ent dilation strategies. We would also have liked to explore
the TS-LSTM architecture, which selects the best out of ev-
ery n frames for the RNN, rather than our method of using
every nth frame.

For this project, we chose not to use optical flow to en-
code the temporal dimension in order to determine how
much a sequential model could capture on its own. How-
ever, we realized that optical flow is an important driver in
the success of action recognition on highly dynamic motion.

(a) LSTM

(b) LSTM with Self-Attention

(c) TCN

Figure 6: Confusion matrices showing model results.

Given more time, we would set up a pipeline to process the
videos’ optical flow data and expand our models to be three-
stream.
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Ultimately, one of the biggest constraints was the lim-
ited data set. Since there were only around 1,000 videos
in total, the validation set and test set each only contained
100 observations. Castro et al. circumvented this problem
by processing videos in 16-frame chunks, but we opted to
use each video clip as a single input to our sequential mod-
els. Therefore, an important direction for future work is to
use data augmentation to increase the data set size. This
could include strategies such as blurring, jittering, shift-
ing, or rotating videos. Future work could also accommo-
date this smaller dataset by exploring alternative regulariza-
tion strategies. We employed dropout for all three models,
weight decay for the LSTM models, and weight normaliza-
tion for the TCN. However, normalization layers might also
be helpful for the LSTM models.
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[7] G. Farnebäck. Two-frame motion estimation based on poly-
nomial expansion. volume 2749, pages 363–370, 06 2003.
2, 3

[8] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolu-
tional two-stream network fusion for video action recogni-
tion. CoRR, abs/1604.06573, 2016. 2, 3

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015. 1

[10] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural
networks for human action recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(1):221–
231, 2013. 2

[11] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In CVPR, 2014. 2, 3

[12] M. Khalid and J. Yu. Multi-modal three-stream network for
action recognition. IEEE ICPR, 2018. 3

[13] P. V. V. Kishore, K. V. V. Kumar, E. K. Kumar, A. S. C. S.
Sastry, M. T. Kiran, D. A. Kumar, and M. V. D. Prasad. In-
dian classical dance action identification and classification
with convolutional neural networks. Advances in Multime-
dia, 2018, 01 2018. 3

[14] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–8, 2008. 2

[15] C. Ma, M. Chen, Z. Kira, and G. AlRegib. TS-LSTM and
temporal-inception: Exploiting spatiotemporal dynamics for
activity recognition. CoRR, abs/1703.10667, 2017. 2, 3

[16] N. Neverova, J. Thewlis, R. A. Güler, I. Kokkinos, and
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